

Dr. Geoffrey M. Rowe Abatech

Presented at the

RAP ETG Meeting

Phoenix, AZ October 28-29, 2008

Objective

- To discuss basic properties of the master curves for binder and mixes
- To demonstrate how all properties for MEPDG input can be derived from the mix master curve

Why?

- MEPDG based on viscosity aging profiles
- Viscosity is estimated from G* and phase angle

2.2.14 after log-log transformation of the viscosity data and log transformation of the temperature data.

$$\eta = \frac{G^*}{10} \left(\frac{1}{\sin \delta} \right)^{4.8628} \tag{2.2.13}$$

$$\log \log \eta = A + VTS \log T_R \tag{2.2.14}$$

where

G* = binder complex shear modulus, Pa.

δ = binder phase angle, °.

η = viscosity, cP.

T_R = temperature in Rankine at which the viscosity was estimated.

A, VTS = regression parameters.

It is possible to derive all this information from the mixture master curve

New concepts

- Relationship between slope of log E* (or G*) vs. ω and δ
- Generalized versus standard logistic functions
- Kaelble shift factor relationship
- Need for more frequencies
- Additional utility of data from E* master curve

How we have developed ideas

- Phase angle data can be deduced from stiffness vs. frequency relationship – we don't need to measure
- Improvements to help with determinations
 - Testing add a few more frequencies
 - Master curve functional add a parameter to describe non-symmetrical shape of master curve
 - Shifting use Kaelble modification to WLF

Mix to binder properties

- Things we need
 - Hirsch model
 - Relationship between phase and G*
- Others have shown that we can use Hirsch model to assess quality of RAP dispersion in HMA blends

Mix E* to binder G* - Hirsch

- Works well for large range of mixture stiffness values
- Previous slide is consistent with this information

Binder G* to binder δ

- Christensen-Anderson proposed relationship linking G* to δ
- Relationship is based on underlying relationship

$$\delta(\omega) = 90 \times \frac{d \log G^*}{d \log \omega}$$

Log-log relationship

- Fundamental relationship
- Applies to a wide variety of materials
- We have looked at with polymers, asphalt, mixes, etc. etc.

$$\bullet$$
 CA \rightarrow

$$G^*(\omega) = G_g[1 + (\omega_c/\omega)^{(\log 2)/R}] - R/(\log 2)$$
 (1.22)

where

 $G^*(\omega) = \text{complex dynamic modulus, in Pa, at frequency } \omega$, rad/s;

 G_g = glassy modulus, typically 1 GPa;

 ω_c = the crossover frequency, rad/s; and

R = the rheological index.

For the phase angle, δ , the following related equation applies:

$$\delta(\omega) = 90/[1 + (\omega/\omega_0)^{(\log 2)/R}] \tag{1.23}$$

where

 $\delta(\omega)$ = the phase angle, in degrees, at frequency ω , rad/s, and

SHRP A369

Binder

CA equation

 It can be shown that the log-log relationship is related to the phase angle

$$G^*(\omega) = G_0 \left[1 + (\lambda/\omega)^{\beta} \right]^{-1/\beta}$$

$$\delta\left(\omega\right) = 90 \left[1 + \left(\omega/\lambda\right)^{\beta}\right]^{-1}$$

$$\frac{d \ln G^*}{d \ln \omega} = \left\{ \frac{G_0}{\omega} \frac{(\lambda/\omega)^{\beta}}{\left[1 + (\lambda/\omega)^{\beta}\right]^{\frac{1}{\beta} + 1}} \right\} \left\{ \frac{\omega}{G_0} \left[1 + (\lambda/\omega)^{\beta}\right]^{1/\beta} \right\} = \frac{(\lambda/\omega)^{\beta}}{\left[1 + (\lambda/\omega)^{\beta}\right]^{\frac{1}{\beta} + 1}} \left[1 + (\lambda/\omega)^{\beta}\right]^{1/\beta} = \frac{(\lambda/\omega)^{\beta}}{1 + (\lambda/\omega)^{\beta}} = \frac{1}{(\omega/\lambda)^{\beta} + 1} = \left[1 + (\omega/\lambda)^{\beta}\right]^{-1}$$

Dickson and Witt (1974) and used in the development of the CA model.

Polystyrene

Very good fit with measured vs. calculated

Polystyrene

Estimated phase angle fits real data very well from the log-log slope information

Log Reduced Frequency, rads/sec (Tref = 132C)

Phase angle

- Shown for a wide variety of materials that δ =90(dlogG*/dlog ω)
- Analysis is consistent with that produced by discrete spectra analysis of G* or G'G" (or E equivalents)
- Technique can help with analysis

Standard

$$\delta(\omega) = 90 \times \frac{d \log E^*}{d \log \omega} = -90 \alpha \gamma \frac{e^{\left[\beta + \gamma(\log \omega)\right]}}{\left[1 + e^{\beta + \gamma(\log \omega)}\right]^2}$$

Generalized
$$\delta(\omega) = 90 \times \frac{d \log E^*}{d \log \omega} = -90 \alpha \gamma \frac{e^{\left[\beta + \gamma(\log \omega)\right]}}{\left[1 + \lambda e^{\beta + \gamma(\log \omega)}\right]^{(1+1/\lambda)}}$$

RAP binder properties

- 1. Obtain mixture E*
- Use E* data to back-calculate binder G* using Hirsch model
- 3. Estimate log-log slope of G^* vs. ω plot
 - a. Method 1 fit CA model
 - b. Method 2 obtain approximate slope from alternate numerical method
- 4. Use G* and d with 2.2.13 and 2.2.14 to estimate binder viscosity
 - a. Other methods could be used to estimate viscosity from G* data from analysis of frequency sweep data
- 5. Apply aging and MEPDG parameters to relationships obtained

Hirsch

- Hirsch model relates volumetrics and stiffness of binder to stiffness of mixture
- Can calculate for single points or isotherms

$$E *_{m} = Pc \left[4,200,00 \left(1 - \frac{VMA}{100} \right) + 3G *_{b} \left(\frac{VFA \times VMA}{10,000} \right) \right] + \left(1 - Pc \right) \left[\frac{1 - \frac{VMA}{100}}{4,200,000} + \frac{VMA}{3 \times VFA \times G *_{b}} \right]^{-1}$$

$$Pc = \frac{\left(20 + \frac{VFA \times 3G *_{b}}{VMA}\right)^{0.58}}{650 + \left(\frac{VFA \times 3G *_{b}}{VMA}\right)^{0.58}}$$

Issues and problems

- Various items in current scheme are problematic
 - Binder is used to dictate shift parameters
 - Symmetric sigmoid
- We would like to use better shifting techniques
 - Consequence need more data points in isotherms to get better shifting
 - Modification to shift factor relationship

Data quality

- More recent testing on master curves for mixes enables more data points to be collected and with better data quality further assessment of models can be considered
- Number of test points/isotherm in present MEPDG scheme is limited resulting in numerical problems in some shifting schemes
- Need in many cases to assume model as part of shift development

Objective of better models

- Leads to better calculations
 - Spectra calculations and interconversions
 - Better definition of low stiffness and high stiffness properties are critical if considering pavement performance
 - Work looking at obtaining binder properties from mix data
 - Phase angle interrelationships
 - Considerable evidence that we should be using a non-symmetrical sigmoid function

•

Sigmoid

Standard logistic

$$\log(E^*) = \delta + \frac{\alpha}{1 + e^{\beta + \gamma(\log \omega)}}$$

Generalized logistic

$$\log(E^*) = \delta + \frac{\alpha}{\left[1 + \lambda e^{(\beta + \gamma \log \omega)}\right]^{1/\lambda}}$$

Why generalized logistic

- Allows non-symmetric sigmoid format consistent with asphalt material behavior
- Binder CA equation also based on non-symmetric behavior

Generalized logistic example

Generalized logistic example

Generalized logistic

- Generalized logistic curve (Richard's) allows use of non-symmetrical slopes
- Introduction of additional parameter λ
 - When λ = 1 equation becomes standard logistic
 - When λ tends to 0 then equation becomes Gompertz
 - λ must be positive for analysis of mixtures since negative values will not have asymptote and produces unsatisfactory inflection in curve
 - Minimum value of inflection occurs at 1/e – or 36.8% of relative height

Kaelble shift factors

Kaelble shift factors

Working with materials from MEPDG E* database – observed that shifting works best with Kaelble modification to WLF equation (<u>Arrhenius and WLF – do not work</u>)

$$\log a_T = -\frac{C_1(T - T_g)}{C_2 + |T - T_g|}$$

Data from MEPDG database

Reduced Frequency, T ref = -21.1 °C

Kaelble shift factors

- WLF, Arrhenius, polynomial fits to shift factors are unstable as data is extrapolated to extreme conditions
- Kaelble provides a sigmoid shift factor relationship

Needs

- Phase angle important in some MEPDG work

 used to derive viscosity can obtain from back-calculation of G_b* from mix data and then use log-log slope or dy/dx of CA model to obtain phase
- Can use method to assess data quality often measurement of phase is poor
- Reduces need to always measure phase can be easily deduced
- Can go back to old historical data and obtain phase information

Example RAP – binder G* & δ

- → G* Back-calculated
- △ Phase from dy/dx CA fit
- Phase DS on Back-calculated

- G* CA Fit
 - Phase from approx slope, CA Fit
 - Phase from approx slope, Back-calculated

Problems with older data

Summary

- E* vs. ω mixture data provides significantly more information than currently assumed
 - Mixture phase angle
 - Binder G* and δ
 - Temperature shift factors
 - Can determine for individual isotherms if needed
- Recommendations
 - Increase test frequencies does not significantly increase preparation/testing time
 - Use free shifting and generalized logistic sigmoid
 - Investigate relationships further, Hirsch, CA models etc.