Historical and Current Rheological Binder Characterization vs. Binder Performance

Dr. David A. Anderson
Consultant
Dr. Geoffrey M. Rowe
ABATECH INC.
Dr. Donald Christensen
Advanced Asphalt Technologies, LLC

Petersen Conference
July, 2008

Why Characterize Binder Rheology With Mathematical Models?

➤ Provide mathematical formula that can be manipulated for purpose of calculation
➤ Provide quantitative parameters that can be used to characterize rheology and changes in rheology
➤ Provide rational basis for specification criteria
➤ Provide link between binder and mixture
Models – What Is Needed?

- Needs vary with application
- From binder perspective binder need model that:
 - Captures changes in binder rheology caused by long-term aging
 - Must be compatible with molecular/structure changes at molecular level
 - Links binder and mixture properties
 - Is related to binder “quality” – a forgotten issue
 - Many possibilities – focus on CA model

Explicit Models – Pre SHRP

- Jongepier and Kuilman
 - Relaxation spectra as log normal distribution
- Dobson (1969)
 - Based on empirical relationships between modulus and phase angle
- Dickenson and DeWitt (1974)
 - Based on hyperbolic representation
 - Recognized relaxation spectra skewed
Models – Christensen-Anderson

- Developed during SHRP
- Genesis was the need to describe relaxation modulus
 - All other rheological functions can be generated from relaxation modulus
- Christensen recognized that relaxation modulus is skewed, not symmetric
 - Concluded that skewed function was needed

CA Model

- Christensen-Anderson - CA model (1993)
 - Relates $G^*(\omega)$ to G_g, ω_c and R
Weibul Function to Model Relaxation Spectrum

\[F(x) = \frac{m}{b} \exp \left(\frac{x-a}{b} \right) \left[1 + \left(\frac{x-a}{b} \right) \right]^{-(m+1)} \]

\(F(x) \) = Probability density function
\(m \) = Skewness parameter
\(x \) = Independent parameter
\(b \) = Scale parameter
\(a \) = Location parameter

Cumulative Weibull Function

Integrate to obtain cumulative function:

\[P(x) = 1 - \left[1 - \left(\frac{x-a}{b} \right)^b \right]^{-m} \]

or:

\[1 - P(x) = \left[1 + \left(\frac{x-a}{b} \right) \right]^{-m} \]
CA Model for $G^*(\omega)$

- Substituting rheological parameters:

$$G^*(\omega) = G_g \left[1 + \left(\frac{\omega}{\omega_c} \right)^{(\log 2 / R)} \right]^{-R / \log 2}$$

$G^*(\omega)$ = Measured complex modulus
G_g = Glassy modulus
R = Rheological Index (shape factor)
ω = Test frequency
ω_c = Crossover frequency (location parameter)

CA Model for $\delta(\omega)$

- Rewriting and substituting rheological parameters:

$$\delta(\omega) = 90 / \left[1 + \left(\frac{\omega}{\omega_c} \right)^{(\log 2 / R)} \right]$$

$\delta(\omega)$ = Measured phase angle
Temperature Dependency

- WLF based on free volume concepts
 - Good results above T_g
- Arrhenius based on rate theory
 - Necessary below glass transition temperature
- Polynomial
 - Useful over small temperature range only
 - Works well with BBR data

R and Delayed Elastic Response

\[
\frac{1}{G^*(\omega)} = \frac{1}{G_E} + \frac{1}{G_{DE}(\omega)} + \frac{1}{G_V(\omega)}
\]

\[
\frac{1}{G_{DE}(\omega)} = \frac{1}{G^*(\omega)} - \frac{1}{G_E} - \frac{1}{G_V(\omega)}
\]

Measured at some T and ω

\[
\frac{1}{G_g}, \quad \frac{1}{(\omega \eta_0)}
\]
Estimate for Rheological Index

- Model can be rewritten as:
 \[\log G^*(\omega) = \log G_g + \left(\frac{R}{\log 2}\right) \log \left[1 - \frac{\delta(\omega)}{90} \right] \]

- \(G^*(\omega) \) versus \(\log[1 - \frac{\delta(\omega)}{90}] \)
 - slope \(\frac{R}{\log 2} \)
 - Can be estimated from a single DSR measurement

- Relationship works well when:
 \[10^\circ < \delta(\omega) < 70^\circ \]

Estimation of \(\eta_0 \) and \(\omega_c \)

- Similar shortcuts
- Full mastercurve is not needed to estimate model [parameters
- Useful in following aging studies
Other Models – van der Poel

- Predicts stiffness from Pen and vis
- Recognized hyperbolic relationship \(S \) vs. \(T \)
- Model implicit in development of nomograph
 - Viscous asymptote
 - Elastic asymptote

Mix models - Witczak

- Basic symmetric sigmoid function
- Basis of Witczak model for asphalt mixture \(E^* \) data
Witczak model

\[
\log(E^*) = \delta + \frac{\alpha}{1 + e^{\beta + \gamma (\log t_p)}}
\]

- Two asymptotes and the central/inflection point of the sigmoid
- Model is limited in shape to a symmetrical sigmoid

Temperature Susceptibility Parameters

- \(PI_{R&B} \) (Pfeiffer and van Doormaal, 1936)
 - Ring and ball and pen
- \(PI_{\log Pen} \) (Huekelom and Klomp, 1964)
 - Slope of log pen vs temperature
- PVN (McLeod, 1972)
 - Pen at 25°C and viscosity at 60 or 135 60°C
- VTS (Puzinauskas)
 - Viscosity at 60 and 135 60°C
Comments - Temperature Susceptibility Parameters

- Based on measurements at two temperatures
- Shear rates not same at multiple temperatures
- Confound time and temperature effects
- Studies show that different indices are not equivalent and vary differently with aging
 - Indices reflect time and temperature susceptibility

Temperature Susceptibility

- In old specifications captures via PI, PVN etc
- How do we capture this in the newer specifications/testing
- Example – five data sets from Lamont Road
BBR data using CAM Model

- Analysis of 5 data examples from Lamont test road
- Master curve construction using AASHTO PP42
 - CAM model

BBR data

- Five sections considered
- Typical example of data
- Used all data available
Master Curve Construction

used AASHTO PP42 to construct master curves

Shift factors

shift factors obtained in Arrhenius form

Arrhenius Fit: $R^2 = 0.9852$

$\ln(aT) = -28797.3 \cdot (1/T - 1/T_r)$
Temperature susceptibility

- The temperature susceptibility is captured in the slope of the shift factor.
- The better r^2 results from the data obtained to compute the empirical parameter closest to the rheological measurements.

Temperature intervals

- Similar to US absolute grade (PG)
- Used in Europe – particularly UK
PI can be related to temp interval

Penetration Index from DSR Data
Model Parameter Changes with Aging
R and ω_c May Both Change

- Changes in R reflect changes in relaxation Modulus
 - Shape of mastercurve
- Changes in Infinite number of combinations ω_c reflect hardening
 - Location of mastercurve

Closing Comments

- Many different models are available for characterizing rheological properties of binders
 - Model selected depends on application
- Skewed function is needed to model mastercurve
- Shortcut methods can be used to generate CA model parameters
- Temperature Susceptibility parameters can be related to CA model parameters
- R and or ω_c can change with aging
Acknowledgements

Concepts described in this presentation are not necessarily original but are borrowed from the work of others that has appeared in the literature over the course of the past 80 or more years. Acknowledgement is given to those who preceded us, names such as Puzinauskas, McLeod, van der Poel, Hukelom and many others.