Implementation of Superpave In USA and other Locations Worldwide

Dr. Geoffrey M. Rowe
Abatech

Asphalt concrete mixes and geosynthetics materials in road constructions
March 12-13, 2019
INTERCONTINENTAL HOTEL MOSCOW TVERSKAYA,
SHRP Asphalt Program

• Objective: Define chemical and physical characteristics of asphalt and their relationship to performance in pavement systems

• Potential results:
 • Improved design capability and performance prediction.
 • Better quality control and better materials.
 • Potential savings of $100 million per year.
Strategic Highway Research Program (SHRP)

• The SHRP asphalt research program, the largest SHRP program at $53 million had three primary objectives (1987 to 1993)
 • Investigate why some pavements perform well, while others do not.
 • Develop tests and specifications for materials that will out-perform and outlast the pavements being constructed today.
 • Work with highway agencies and industry to have the new specifications put to use.

“We need a chemical spec for asphalt cement…”

https://www.pavementinteractive.org/reference-desk/design/mix-design/superpave-overview/
Distress types and conditioning

• Three types of distress considered
 • Rutting
 • Fatigue
 • Low Temperature cracking

• Three aging conditions
 • Original – what is in the tank.
 • RTFOT – immediately after constriction
 • Rolling thin film oven
 • PAV – about 7+ years of construction
 • Pressure aging device
SHRP Asphalt Program

• The final product of this research program is a new system referred to as “Superpave”, which stands for
 SUuperior
 PERforming
 Asphalt
 PAVEments

• Superpave, in its final form consists of three basic components:
 • An asphalt binder specification. This is the PG asphalt binder specification.
 • A design and analysis system based on the volumetric properties of the asphalt mix. This is the Superpave mix design method.
 • Mix analysis tests and performance prediction models. This area was not fully completed and is still ongoing!
Superpave National Implementation

• 1996 – 1% of projects, 2% of tonnage
• Significant implementation by 2000
• Last state to implement – California – 2016
• Large scale implementation now exist in USA
 • Some localities, districts, small organization still using old systems
Superpave system of binder selection and mix design

• An asphalt binder specification.

• The Superpave mix design method

• Mix analysis tests and performance prediction models

Superpave - needed for the construction of quality roads
Superpave system of binder selection and mix design

• An asphalt binder specification.
• The Superpave mix design method
• Mix analysis tests and performance prediction models

Superpave binder testing, Asphalt Institute, 2018
Asphalt binder specification

- Binder specification was different in concept to specifications previously
- Specifically developed for a climate based approach
- Temperature of test changed depending upon climate and estimated pavement temperature
Binder specification implemented in AASHTO M320

- Requirement remains constant – regardless of climate – just the test temperature changes
Superpave Asphalt Binder Specification

Grading System Based on Climate

PG 58-22

Performance Grade
Average 7-day max pavement design temp
Min pavement design temp

(orginal implementation)
Equipment and property definition

• Tests were developed to capture rheological performance in a certain stiffness range – also associated with pavement temperature

• Some new equipment incorporated into specifications for asphalt binders
Asphalt binder and mix equipment

• Binder test equipment included:

Binder Conditioning

RTFOT

PAV

Binder Testing

Rheometers

RV

DSR

BBR

DTT
Binder testing reference

• Good source of detailed information on testing which can be very helpful for training technicians with new equipment

• Available from Asphalt Institute

Changes to binder area following implementation

• Climate models updated
• Low temperature, search for a better definition
• High temperature – implementation of Jnr

• Ongoing work – not discussed in this presentation
 • New fatigue parameters, NCHRP study
 • Durability cracking parameters – two options ΔT_c and G-R being considered
Climate model update

• 1997/98 – New algorithm introduced for cold temperature
• 2003/05 – New method for high temperature
 • Old method based on 7-day high
 • New method weighted for damage
 • Implemented as degree days
 • Degree days = sum of \((T_{\text{high}} - T_{20C})\) for average year
 • Impacts warmer climates more significantly
• Implemented in 2003
• Allows users to consider different terminal conditions – size of rut depth
Russian Climate Map

• Recently analyzed all available data for Russia to produce variation of high and low PG grades based on 98% reliability and 12.5mm rut depth in same manner as USA data developed

• Corrected equation from simple polynomial to sigmoid to correct variation in PG for more northern and southern climates than found in USA
 • Equation published in 2003 only consider latitudes from 20 to 48°. Did not fit data well above latitude of 45°.
Russia Low PG – 98% reliability

• Using data from Russian weather stations – climate model implemented with Google Earth output
Russia High PG – 98% reliability, 12.5mm rut

• Output effected by selected rut depth, reliability and climate inputs
• Full software implementation
Low temperature testing

- A large effort resulted in an alternate procedure being developed
- BBR master curves are used to generated stiffness
- Thermal stress is calculated using software
- Results compared to tensile strength data
 - Published in AASHTO but not implemented!
 - Some limited use in Canada, Utah and a few other locations

\[\sigma = \int_{\xi_0}^{\xi} E(\xi - \xi') \frac{d(\alpha \cdot \Delta T)}{d\xi'} d\xi' \]
Other methods include ..

- Asphalt Binder Cracking Device (ABCD) (Kim, 2007)
 - Determines Critical Cracking Temperature
 - Asphalt pored into a ring
 - Sensors record cracking temperature

- BBR Strength of Asphalt Binders (Marasteanu, 2012)
 - A BBR test performed at a constraint strain rate
 - Modified BBR
 - Determines strength
 - Thermal stress computation or use directly
High temperature performance

- Multi-stress creep recovery (MSCR) test
- Measures Jnr – average from 10 load cycles
- Also reported is % recovery
- Test is considered an improvement over $G^* \cdot \sin \delta$
- Implemented in ASSHTO M332

Test using the DSR applying a 1 sec creep stress followed by 9 sec recovery.
MSCR test performed in DSR

- PG 64 (Standard, Heavy, Very heavy, Extreme) based on traffic

 - PG 64S-XX $J_{nr} \geq 4.5$
 - PG 64H-XX $J_{nr} \geq 2$
 - PG 64V-XX $J_{nr} \geq 1$
 - PG 64E-XX $J_{nr} \geq 0.5$

\[\text{Higher Strains in MSCR!!} \]

- $\gamma_p = \text{peak strain}$
- $\gamma_u = \text{un-recovered strain}$
- $\gamma_r = \text{recovered strain}$

\[J_{ur} = \frac{\gamma_u}{\tau} \]

\[\% \text{ recovery} = \frac{100 \times \gamma_r}{\gamma_p} \]
Superpave system of binder selection and mix design

• An asphalt binder specification.

• The Superpave mix design method

• Mix analysis tests and performance prediction models
Superpave mix design

- AASHTO and ASTM specifications cover the practice

- Good reference document is Asphalt Institute MS-2
 - Note the current MS-2 includes what information was previously in SP-2
Superpave Gyratory Compactor

• Basis
 • Texas equipment
 • French operational characteristics

• 150 mm diameter
 • up to 37.5 mm nominal size

• Height Recordation
Gyratory compaction

- Original methods developed in USA
- Implemented in France
- USA looked during SHRP project at French and USA methods
 - Adopted SHRP methods with 1 – degree angle
 - Realized that 1 – degree angle not achieved – so accepted angle that was in common compactors implemented (Pine and Troxler)

1950’s – Texas Gyratory Compactor

Francis Moutier with LCPC Gyratory Compactor

SHRP/Superpave Gyratory Compactors
Gyratory compaction – final adoption

• AASHTO T312
• Pressure - 600 ± 18 kPa
• Angle of Gyration - 1.25 ± 0.02° external or, 1.16 ± 0.03° internal
• Rate of Gyration - 30 ± 0.5
• Specimen Height, nearest 0.1mm
Mixture volumetrics

- Concept based on Voids in Mineral Aggregate and Voids Filled with Binder
- Design selected when 4% air voids achieved
- Method effectively controlled effective volume of binder
- Similar in concept to older methods published by Asphalt Institute and others – except that 4% air voids fixed
Aggregate Properties

- Consensus Properties - *required*
 - coarse aggregate angularity (CAA)
 - fine aggregate angularity (FAA)
 - flat, elongated particles
 - clay content

- Source Properties - *agency option*
 - toughness
 - soundness
 - deleterious materials

- Values change as function of traffic level
Superpave gradation controls

• Originally a restricted zone existed in all specifications
• Many state DOTs have now removed
Determine Nini, Ndes, and Nmax – version 3

• AASHTO R35 - Superpave Gyratory Compaction Effort
 • These have changed since Superpave first introduced
 • 1996, 2004 to 2010
 • Current requirements are significantly less complex

<table>
<thead>
<tr>
<th>20-Year Design Traffic, ESALs (millions)</th>
<th>N_{design} (Number of Design Gyrations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.3</td>
<td>50</td>
</tr>
<tr>
<td>0.3 to < 3</td>
<td>75</td>
</tr>
<tr>
<td>3 to < 10</td>
<td>100</td>
</tr>
<tr>
<td>10 to < 30</td>
<td>100</td>
</tr>
<tr>
<td>> 30</td>
<td>125</td>
</tr>
</tbody>
</table>

2010
Moisture Sensitivity, AASHTO T 283

Measured on Proposed Aggregate Blend and Asphalt Content

3 Conditioned Specimens
3 Dry Specimens

Tensile Strength Ratio

80% minimum (Varies by DOT)

6 to 8% air
Dry
6 to 8% air
55 to 80% saturation
Superpave Mixture Requirements

• Specimen Height
• Mixture Volumetrics
 • Air Voids
 • Voids in the Mineral Aggregate (VMA)
 • Voids Filled with Asphalt (VFA)
 • Mixture Density Characteristics
• Dust Proportion
• Moisture Sensitivity
Selection of Design Asphalt Binder Content
Combined volumetric chart for QC

• Can combine the mix design and QC information to a single chart with
 • Effective volume of binder
 • Volume of Stone
 • Voids in Mineral Aggregate
 • Voids in Mix
 • Voids filled with binder
Superpave system of binder selection and mix design

• An asphalt binder specification.

• The Superpave mix design method

• Mix analysis tests and performance prediction models
Superpave Equipment

• Initial devices not adopted/not used
 • Superpave shear tester (fatigue and stiffness modulus)
 • Indirect tensile test (low temperature cracking)
 • Environmental Conditioning System (ECS) (moisture damage)

• Limited use
 • Bending beam fatigue

• Implemented
 • Indirect tensile test (water damage – AASHTO T283)
 • Wheel tracking tests
 • Asphalt Pavement Analyzer (APA)
 • Hamburg Wheel Tracking (HWT) device
Hamburg

• Adopted by many states for water damage and deformation control
 • Originally developed in Hamburg Germany based on UK design of Immersion Wheel Tracking Test
 • Implemented in USA following study in mid-1990s
 • Immersion wheel tracking had best performance with expected results – SHRP research paper - 1993
Superpave implementation

• Teamwork between agencies (owners) and industry has been key
 • Now 25-years of various groups
 • Expert task groups
 • Lead states
 • Regional Asphalt User Producer Groups

• Important to know limitations and assumptions in system as implementation takes place in other locations

• Ongoing improvements to system
 • Industry
 • NCHRP studies
 • FHWA, etc.
Acknowledgements

We appreciate the assistance of:

Cooper Technology

Keith Cooper (founder) – developing equipment and ideas for SHRP Projects A003a and A004

Cox and Sons

James Cox – developer of the Simple Shear Test and many other pieces of equipment supporting the SHRP project A003a and the Superpave implementation

for supporting the development of this presentation
Thank you for listening

Questions?
Discussion?

Geoff Rowe
+1 267 772 0096
growe@abatech.com